
Flash pyrolysis plant to convert the saw dust, sugarcane bagasse, biomass residues, lignite & coal into syn-oil, syn-gas & carbon

Introduction -

GoodRich offers flash pyrolysis plants from Russia in 3 models, i.e., FP-10, FP-20 & FP-40. The input capacity of FP-10 model is 10,000 tons per year; FP-20 model is 20,000 tons per year and FP-40 model is 40,000 tons per year.

Pyrolysis is the thermal decomposition of input materials with limited oxygen access, which takes place at relatively low temperatures (500-900[°]C) as compared to gasification (800-1,300[°]C) and burning (900-2,000[°]C) processes. Compared to gasification or burning, pyrolysis is highly efficient, but it is the least developed technology as on date.

Flash pyrolysis plant can use the saw dust, wood wastes, plywood and furniture factory wastes, all kinds of biomass and agricultural wastes including paddy husk and sugarcane bagasse, corn stalk, cotton stalk, lignite, coal or poultry litter of broilers as the feed stock. Russian flash pyrolysis technology is a result of 40 years of research made by the scientists of the former Soviet Union. An experimental plant was set up in 2008, the FP-10 model was set up in 2013; FP-20 model in 2014 and FP-40 model in 2017.

In the process, raw materials are crushed to 0-3 mm size & dried to less than 2% moisture, using a fluid bed drier. Pyrolysis is an exothermic process & the heat generated in the reaction is used for drying. The dried materials are flash-pyrolysed in less than 6 seconds on a hot metal bed, in the temperature range of 500-900^oC.The resulting products are

passed through a gas cleaning unit to separate syn-oil (a furnace oil /diesel substitute), syn-gas (a natural gas substitute) & high-carbon material. The syn-oil burns like diesel & the syn-gas burns like natural gas. High-carbon material contains up to 90% carbon.

The output energy from the flash pyrolysis plant is 1.5-2 times higher than its input energy. This is due to the fact that during pyrolysis, oxygen is removed from the feed stock, which otherwise combines with hydrogen to form water.

By removing oxygen from the feedstock in the drying & pyrolysis processes, energy in the hydrogen is completely utilized by way of hydrocarbons. Flash pyrolysis combines molecular & quantum physics along with thermodynamics. Russians call this technology as revolutionary, as it can simply double the energy resources of the world.

In the pyrolysis reactor, micro-bursting takes place. The intermolecular & intra-molecular bonds between the chemical elements are broken, synthesizing new bonds that surpass the original ones in terms of energy value. The traditional energy conservation law is not applicable for specific heats of substance-burning here, as the effect of 'fast heat stroke on the substance particle' is employed. In flash pyrolysis, a number of Russian design & engineering institutes have been involved.

The syn-gas and syn-oil can be produced at 20-25% of the current prices of natural gas and furnace oil for equivalent energy value, resulting in enormous savings.

What is pyrolysis?

Pyrolysis is the decay or decomposition of organic & inorganic compounds during thermal exposure. The process of pyrolysis is already used to convert hydrocarbons into ethylene & propylene. Currently, world's production of 113 million tons of ethylene & 40 million tons of propylene are through pyrolysis. Other important products of pyrolysis are butadiene & benzene. Currently, through fast pyrolysis of hydrocarbons, 80% of world's butadiene & 39% of world's benzene are produced.

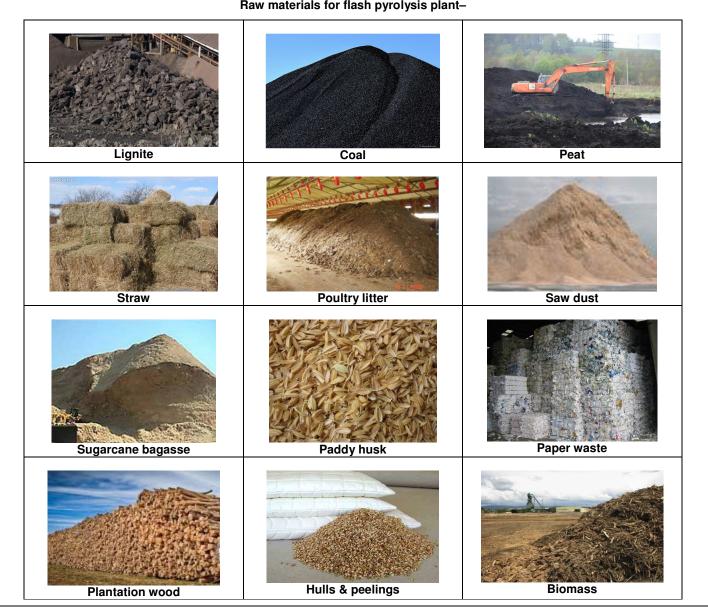
During the flash pyrolysis of biomass, complex compounds are converted into hydrocarbons with smaller molecular weights. Thermal efficiency of the flash pyrolysis process is 91-93% & the overall performance is 7-8 times better than other comparative technologies. Comparison between the existing technologies in the world, for flash pyrolysis –

Name	BTG	RTP (Italy)	FP-40
	(Netherlands)		(Russia)
Type of	Ablative	CFB	Ablative
Reactor	(cone in a	(circulating	(plate)
	cone)	fluidized	
		bed)	
Raw material	< 2 mm	< 2 mm	< 3 mm
size			
Thermal	Sand, nitrogen	Sand,	Metal
agent		recycled	
		gases	
Requirement	Permanent	Permanent	Only
of external			when
energy			started
Major	18,000	18,000	80,000
overhauling	hours	hours	hours
period			
Purity of the	Average	Average	High
products			
Specific	350 USD	400 USD	40 USD
capital			
investments			
per ton of			
annual feed			
stock			
Payback	48	60	12
period	months	months	months

Products of flash pyrolysis plant -

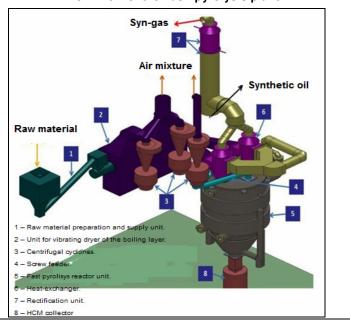
- <u>Syn-gas</u> 300 to 700 cubic metres per ton of dry weight of the raw material. Its calorific value ranges from 6,000- 8,000 Kcal/m³. It can be used for all the purposes where natural gas is being used. It burns clean & reaches high temperatures.
- <u>Syn-oil</u> 100 to 600 kgs per ton of dry weight of the raw material. Its calorific value ranges from 7,000-9,000 kcal /kg. It can be used as a burning medium in place of diesel / furnace oil in boilers, kilns, furnaces & oil generators. By increasing the height of the rectifier column or by increasing its pressure, light & heavy oils can be recovered separately in the process.
- <u>High-carbon material</u> 150 to 300 kgs per ton of dry weight of the raw material, with calorific values ranging from 3,000-7,000 kcal/kg & carbon contents up to 90%. It can be used as a source of high purity carbon in ferro alloys, steel & other metallurgical plants, in tyre making, food industries, medicine (to replace activated carbon) and as a source of

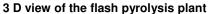
heat in furnaces & kilns (to replace the pet coke). Its particle size is less than 1.5 mm and after briquetting, it can also be used for all the applications of charcoal.

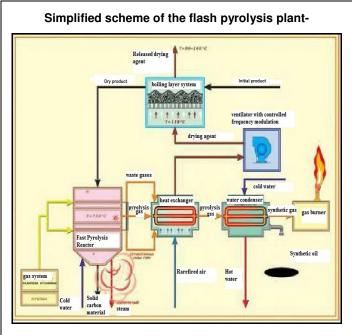

Input & output values of flash pyrolysis -

Following are the maximum recoveries of gas, oil & carbon from the flash pyrolysis process, as compared to the carbonisation (charcoal making) process –

Features	Low	High	Carbonisa-
	tempera-	tempera-	tion
	ture	ture	(slow
	setting in	setting in	pyrolysis or
	flash	flash	charcoal
	pyrolysis	pyrolysis	making
	for	for	process)
	maximum	maximum	
	recovery	recovery	
	of oil	of gas	
Processing time	Up to 6	Up to 6	24 to 36
	seconds	seconds	hours
Raw material	Up to 3 mm	Up to 3	Large
size		mm	
Input material	Up to 8%	Up to 8%	High
moisture			
Temperature	500-700 ⁰ C	700-900 ⁰ C	400-600 ⁰ C
Pressure	100	100	100
	kPa	kPa	kPa
Output of syn-	Up to 30%	Up to 70%	Up to 40%
gas (% mass of			
dry material)			
Heat value of	6,000 -	6,000 -	500 -
syn-gas	8,000	8,000	1,000
(kcal/m ³)			
Output of syn-oil	Up to 60%	Up to 10%	Up to 20%
(% mass of dry	-		-
material)			
Heat value of	7,000 –	7,000 –	2,400-
syn-oil (kcal/kg)	9,000	9,000	4,800
Output of	Up to 30%	Up to 30%	30-40%
carbon (% mass			
of dry material)			
Heat value of	Up to	Up to	Up to
carbon (kcal/kg)	7,000	7,000	8,000


Note: The flash pyrolysis plant can take any moisture up to 30%. However, in such a case, the quantity of dried raw material will come down and the overall plant capacity will decrease. Hence it is desirable to install an external drier, to dry the raw material up to 8-12% moisture.


Raw materials for flash pyrolysis plant-



Applications of flash pyrolysis -

- To replace the natural gas & furnace oil in boilers, glass melting units, re-heating furnaces of steel rolling mills, iron ore pelletisation plants, alumina sintering plants, aluminium & copper melting units, refractory & ceramic kilns, DRI making tunnel kilns etc., where such applications need high-temperature gases. For these thermal applications, the investment will pay-back within a year.
- To generate electricity at 50% of the present cost by sugar factories, rice mills & independent power plants. Syn-oil & high-carbon material can recover half of the raw material cost. The electricity can be generated either by the traditional boiler-turbine route or by employing low RPM gas generators of 0.3 MW to 1 MW ratings.

Following are the recovery figures of oil, gas & carbon from some of the raw materials -

1. Output of products from the processing of 1 ton of wood waste –

Processed products	Output, depending on the reactor temperatures		
	520 ⁰ C	700 ⁰ C	830 ⁰ C
Liquid fraction, kgs	300	450	220
Syn-gas, kgs	115	200	415
High carbon material, kgs	300	115	80

2. Output of products from the processing of 1 ton of paddy husk -

Processed products	Output,	, depending	g on the
	react	or tempera	tures
	520 ⁰ C	700 ⁰ C	860 ⁰ C
Liquid fraction, kgs	27	45	20
Syn-gas, kgs	145	270	560
High carbon material, kgs	700	270	190

3. Output of products from the processing of 1 ton of lignite -

Processed products	Output,	depending	on the
	reacte	or temperat	ures
	620 ⁰ C	780 ⁰C	930 ⁰ C
Liquid fraction, kgs	140	240	160
Syn-gas, kgs	80	100	220
High carbon material, kgs	280	160	120

4. Output of products from the processing of 1 ton of coal-

Processed products	Output,	depending	g on the
	react	or tempera	tures
	690 ⁰ C	800 ⁰C	950 ⁰ C
Liquid fraction, kgs	340	440	240
Syn-gas, kgs	100	200	480
High carbon material, kgs	530	330	250

5. Output of products from the processing of 1 ton of coal sludge -

Processed products	Output	, depending	on the
	reactor temperatures		tures
	650 ⁰C	800 ⁰ C	950 ⁰ C
Liquid fraction, kgs	100	140	90
Syn-gas, kgs	40	50	140
High carbon material, kgs	180	130	90

6. Output of products from the processing of 1 ton of peat-

Processed products		t, depending tor tempera	
	500 °C	680 ⁰ C	870 ⁰ C
Liquid fraction, kgs	170	300	120
Syn-gas, kgs	30	60	280
High carbon material, kgs	300	140	100

7. Output of products from the processing of 1 ton of raw shale –

Processed products		dependine or tempera	0
	570 [°] C	750 [°] C	870 [°] C
Liquid fraction, kgs	100	200	70
Syn-gas, kgs	70	70	220
High carbon material, kgs	250	150	130

Basis for selection of raw materials -

Output in the pyrolysis plant increases -

- By decreasing the initial moisture level of the raw material (increases the gas volume); &
- By increasing the volume of biomass in the mixture (increases the gas calorific value).

Compliance to these two principles at the stage of selection & preparation of the raw material allows achieving maximum productivity in terms of gas volume & gas calorific value.

Photo of Syn-gas from the flash pyrolysis-

Following are the energy balances of some of these raw materials-

Composition	Saw dust / sugarcane bagasse / other	Paddy husk (%)	Indone- sian thermal coal
	biomass (%)		(%)
Moisture (dried to 10%)	10	10	10
Carbon	42.9	34.9	58.6
Hydrogen	5.3	4.6	4.1
Oxygen	36.5	34.1	11.8
Nitrogen	0.6	2.0	1.0
Sulphur	0.2	0.1	0.6
Ash	4.5	14.3	13.9
Total	100%	100%	100%
Gross calorific value (as	3,724	2,938	5,654
per DULONG formula)	Kcal/kg	Kcal/kg	kcal/kg
Net calorific value (as	3,444	2,695	5,437
per DULONG formula)	Kcal/kg	Kcal/kg	kcal/kg
Recoveries from the flash pyrolysis plant– - Recovery of oil (kgs /	450	20	440
ton)			
 Minimum heat value of oil (kcal/kg) 	7,000	7,000	7,000
- Recovery of syn-gas (kgs/ ton)	200	560	200
 Minimum heat value of syn- gas (kcal/kg) 	6,000	6,000	6,000
 Recovery of high carbon material (kgs/ ton) 	115	190	330
 Minimum heat value of high carbon material (Kcal/kg) 	6,000	2,000	4,000
- Net calorific value of	5,040	3,880	5,600
all the above 3 products	kcal/kg	kcal/kg	kcal/kg
- Net output - energy	146%	144%	103%
recovered, as a percentage of net input - energy	70 /0	/0	10076

Compound	Representatives	Concentration, % mass
Alkans -	Pentane (C5H12) etc. до	56.6
saturated	C16H34 + cyclopenthane,	00.0
	cyclohexane, 1,2-	
hydrocarbons	ethylcyclohexane	
Alkadienes –	2-methyl-butadien	10.8
unsaturated	1,3(isoprene) etc.	
hydrocarbons		
Aromatic	Benzene (C6H6) or 1,2-	14.3
hydrocarbons	dimethylbenzene (ortho-	
	xylol) up to 1,4-	
	dimethylbenzene,	
	toluene, vanilin etc.	
Hydroxils	Alcohols (methanol, diols,	14.6
	triols etc). Phenols	
	(hydroxybenzene, 3-	
	methylphenol etc) Esters	
	(benzole acid etc.)	
Carbonils	Aldehydes (3,4,5-	2.2
	trimethoxibenzaldehid,	
	dimetoxisalycillic	
	aldehyde, 5-methyl-2-	
	furancarboxaldehyde)	
	Ketones(dymethilketone)	
	acetone etc.)	
Carbonic acids	Aromatic acids;	0.3
	Penthane acid etc	
Esters	Ethyl acetate, methyl	0.1
	benzoate etc.	
Nitrogen-	Nitromethane,	1.1
containing	nitrobenzene;Amines;	
	Carbamide; Amino acids	
	Total	100.0

Syn-oil parameters (using peat) from the flash pyrolysis-

Note: Oil density is 0.8-1.0 gram/cm³

Parameters of high carbon material from the flash pyrolysis –

Characteristic	Value
Volume of particles	0.5-1.5 mm
Carbon percentage	Up to 95.5%
Hydrogen percentage	Up to 0.8%
Oxygen percentage	Up to 0.7%
Nitrogen percentage	Up to 1.1%
Calorific value per kg	6,900-7,400 Kcal

Syn-gas composition f	rom the flash pyrolysis –

Component	Fraction, % mass.
H ₂	10.0 – 35.0
O ₂	4.0 - 10.0
N ₂	3.0 - 6.0
CH ₄ ,C ₂ ,C ₃ ,C ₄	30.0 - 55.0
CO ₂	Traces
со	15.0 - 25.0
Heat value	6,000 – 8,000 kcal/ m ³
Density Kg/m ³	From 0.8

Notes:

- 1. The final gas temperature is around 30° C.
- 2. The gas composition can be changed by changing the process temperatures. The H_2 & CO contents can be reduced up to 1.5% each & O_2 content, to less than 5%.
- 3. The gas comes out without any pressure (less than 1 atm). It can be fed to a compressor that pressurizes the gas & fills into a gas tank, with the desired pressure.

The syn-gas from the flash pyrolysis plant contains large amounts of hydrogen & hydrocarbons. While burning, it sharply reduces the harmful exhausts (CO, CO₂) and is hence environmentally clean. No other harmful products are generated from the organic raw materials.

Utilities needed for FP-40 Plant -

- Required plant area 100 m³
- Height of construction 10 metres
- Propane / LPG (to automatically control the reactor temperature) up to 2,000 litres/year
- Electricity 60 kWh
- Water Up to 20 m³ per day
- Supervisory staff for plant operation 2 persons per shift

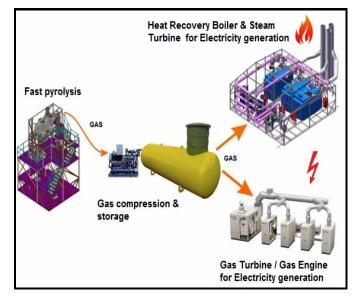
<u>Note:</u> Annual consumption of propane gas is only 600 kgs in case of continuous operation.

Scope of supply & prices -

FP-10 / FP-20 / FP-40 plants can be supplied on turn-key basis, including the feeding system of raw material to the plant. The cost includes –

- Designing
- Manufacturing
- Supply
- Installation at site & start-up
- Training the staff
- Initial supervision &
- 2 years of warrantee services.

The supply period is 6 months. The plant can be run continuously for 330 days in a year. It needs preventive maintenance for 7 days in a year. The equipment life is 20 years. It needs major overhauling only after 10 years.


The investments on the flash pyrolysis plants are -

- FP-10 model Rs. 5 crores
- FP-20 model Rs. 7.5 crores
- FP-40 model Rs. 10 crores

Notes:

- 1) The cost of gas generators for the power plant will be extra at Rs. 3 crores per MWh.
- 2) The local equipments include gas holder, gas compressor, pipes and the machines needed for the preparation of raw materials (crusher for wood wastes, dryer for saw dust and bagasse to reduce the moisture up to 12% and hopper for the raw material storage).

The scheme of mini thermo-electric plant on the basis of gas generation in FP-10, FP-20 & FP-40 units-

Cost of production, profitability and investment estimates for flash pyrolysis plants of 40,000 tons/year -

A. Cost of production & profitability estimates -

	Wood waste	Sugar- cane bagasse & other biomass	Paddy husk	Indo- nesian ther- mal coal
Price of raw material	Rs.	Rs.	Rs.	Rs.
per ton	3,000	2,000	3,000	5,000
Initial moisture content	30%	40%	10%	20%
Effective cost per	Rs.	Rs.	Rs.	Rs.
ton, on bone-dry basis	4,300	3,300	3,300	6,300
Add: Cost of	Rs.	Rs.	Rs.	Rs.
processing per ton, including drying, pyrolysis, carbon briquetting, packing, manpower & maintenance	600	700	400	500
Total cost of input	Rs.	Rs.	Rs.	Rs.
per ton	4,900	4,000	3,700	6,800
Recovery of oil (kgs per ton)	450	450	20	440
Recovery of syn-gas (kgs per ton)	200	200	560	200
Recovery of carbon material (kgs per ton)	115	115	190	330
Revenue from oil @ Rs. 20,000 per ton (heat value – 7,000 kca/kg)	Rs. 9,000	Rs. 9,000	Rs. 400	Rs. 8,800

Revenue from syn-	Rs.	Rs.	Rs.	Rs.
gas (6,000 kcal/kg,	2,000	2,000	5,600	2,000
which can generate				
2 KWh of electricity				
by using gas				
generators, @ Rs. 5				
per KWh of				
electricity)				
Revenue from	Rs.	Rs.	Rs. 380	Rs. 990
carbon material @	920	920	(Rs.	(Rs.
Rs. 8,000 per ton			2,000	3,000
			per ton	per ton
			only,	only,
			due to	due to
			high	high
			ash)	ash)
Total value of	Rs.	Rs.	Rs.	Rs.
output por top	11,920	11,920	6,380	11,790
output per ton	11,920	11,520	0,500	11,730
Net margins per ton	Rs.	Rs.	Rs.	Rs.
		-		
	Rs.	Rs.	Rs.	Rs.
Net margins per ton	Rs. 7,020	Rs. 7,920	Rs. 2,680	Rs. 4,990
Net margins per ton	Rs. 7,020 Rs.	Rs. 7,920 Rs.	Rs. 2,680 Rs.	Rs. 4,990 Rs.
Net margins per ton	Rs. 7,020 Rs. 19.66	Rs. 7,920 Rs. 19.00	Rs. 2,680 Rs. 9.65	Rs. 4,990 Rs. 15.97
Net margins per ton Profit before taxation	Rs. 7,020 Rs. 19.66 crores	Rs. 7,920 Rs. 19.00 crores	Rs. 2,680 Rs. 9.65 crores	Rs. 4,990 Rs. 15.97 crores
Net margins per ton Profit before taxation	Rs. 7,020 Rs. 19.66 crores Rs.	Rs. 7,920 Rs. 19.00 crores Rs.	Rs. 2,680 Rs. 9.65 crores Rs.	Rs. 4,990 Rs. 15.97 crores Rs.
Net margins per ton Profit before taxation	Rs. 7,020 Rs. 19.66 crores Rs. 16.00	Rs. 7,920 Rs. 19.00 crores Rs. 16.00	Rs. 2,680 Rs. 9.65 crores Rs. 25.00	Rs. 4,990 Rs. 15.97 crores Rs. 16.00
Net margins per ton Profit before taxation	Rs. 7,020 Rs. 19.66 crores Rs. 16.00 crores	Rs. 7,920 Rs. 19.00 crores Rs. 16.00 crores	Rs. 2,680 Rs. 9.65 crores Rs. 25.00 crores	Rs. 4,990 Rs. 15.97 crores Rs. 16.00 crores
Net margins per ton Profit before taxation	Rs. 7,020 Rs. 19.66 crores Rs. 16.00 crores (with 2	Rs. 7,920 Rs. 19.00 crores Rs. 16.00 crores (with 2	Rs. 2,680 Rs. 9.65 crores Rs. 25.00 crores (with 5	Rs. 4,990 Rs. 15.97 crores Rs. 16.00 crores (with 2
Net margins per ton Profit before taxation	Rs. 7,020 Rs. 19.66 crores Rs. 16.00 crores (with 2 MWh	Rs. 7,920 Rs. 19.00 crores Rs. 16.00 crores (with 2 MWh	Rs. 2,680 Rs. 9.65 crores Rs. 25.00 crores (with 5 MWh	Rs. 4,990 Rs. 15.97 crores Rs. 16.00 crores (with 2 MWh
Net margins per ton Profit before taxation	Rs. 7,020 Rs. 19.66 crores Rs. 16.00 crores (with 2 MWh power	Rs. 7,920 Rs. 19.00 crores Rs. 16.00 crores (with 2 MWh power	Rs. 2,680 Rs. 9.65 crores Rs. 25.00 crores (with 5 MWh power	Rs. 4,990 Rs. 15.97 crores Rs. 16.00 crores (with 2 MWh power
Net margins per ton Profit before taxation Total investment	Rs. 7,020 Rs. 19.66 crores Rs. 16.00 crores (with 2 MWh power	Rs. 7,920 Rs. 19.00 crores Rs. 16.00 crores (with 2 MWh power	Rs. 2,680 Rs. 9.65 crores Rs. 25.00 crores (with 5 MWh power	Rs. 4,990 Rs. 15.97 crores Rs. 16.00 crores (with 2 MWh power
Net margins per ton Profit before taxation Total investment Pay-back period at	Rs. 7,020 Rs. 19.66 crores Rs. 16.00 crores (with 2 MWh power plant)	Rs. 7,920 Rs. 19.00 crores Rs. 16.00 crores (with 2 MWh power plant)	Rs. 2,680 Rs. 9.65 crores Rs. 25.00 crores (with 5 MWh power plant)	Rs. 4,990 Rs. 15.97 crores Rs. 16.00 crores (with 2 MWh power plant)

B. Investments -

	FP-10 (input capacity - 10,000 tons/year)		FP-20 (input capacity – 20,000 tons /year)		FP-40 (input capacity – 40,000 tons /year)	
	With maximum oil recovery option	With maximum gas recovery option	With maximum oil recovery option	With maxi- mum gas recovery option	With maximum oil recovery option	With maximum gas recovery option
Flash pyrolysis main plant Add: taxes & duties, transport, erection, commissioning & trial run	3.00 0.75	3.00 0.75	4.50 1.10	4.50 1.10	6.00 1.30	6.00 1.30
Oil filling, gas holder, compressor, etc., & buildings	0.75	0.75	1.10	1.10	1.30	1.30
Raw material preparation such as crushing, screening & drying	0.50	0.50	0.80	0.80	1.40 (needs an external drier)	1.40 (needs an external drier)
Total investment without power plant	5.00	5.00	7.50	7.50	10.00	10.00
Gas generators for power plant, including electricals	1.50 (0.5 MWh)	3.00 (1 MWh)	3.00 (1 MWh)	6.00 (2 MWh)	6.00 (2 MWh)	12.00 (4 MWh)
Total investment with the power plant	6.50	8.00	10.50	13.50	16.00	22.00

(Rs. in crores)

Photos of FP-20 flash pyrolysis plant

The investments on the flash pyrolysis plants range from Rs. 5 to 10 crores, depending on their production capacities. The pay-back period is around 1 year, when used as a replacement for natural gas / diesel, or 3 years when used for power generation.